Summary of thermodynamic potentials

Summary of thermodynamic potentials#

Potential

Symbol

Natural Variables

Equation

Total derivative

Behavior at Equilibrium

Energy

\(\underline{U}\)

\(N, \underline{V}, \underline{S}\)

\(\underline{U} = T\underline{S} - P\underline{V} + \sum_i^n \mu_i N_i\)

\(d\underline{U} = Td\underline{S} - P d\underline{V} + \sum_i^n \mu_i dN_i\)

Minimized

Entropy

\(\underline{S}\)

\(N, \underline{V}, \underline{U}\)

\(\underline{S} = \frac{1}{T}\underline{U} + \frac{P}{T}\underline{V} - \sum_i^n \frac{\mu_i}{T} N_i\)

\(d\underline{S} = \frac{1}{T}d\underline{U} + \frac{P}{T}d\underline{V} - \sum_i^n \frac{\mu_i}{T} dN_i\)

Maximized

Enthalpy

\(\underline{H}\)

\(N, P, \underline{S}\)

\(\underline{H} = \underline{U} + P\underline{V}\)

\(d\underline{H} = Td\underline{S} + \underline{V}dP + \sum_i^n \mu_i dN_i\)

Minimized

Helmholtz FE

\(\underline{F}\)

\(N, \underline{V}, T\)

\(\underline{F} = \underline{U} - T\underline{S}\)

\(d\underline{F} = -\underline{S}dT - Pd\underline{V} + \sum_i^n \mu_i dN_i\)

Minimized

Gibbs FE

\(\underline{G}\)

\(N, P, T\)

\(\underline{G} = \underline{U} - T\underline{S} + P\underline{V}\)

\(d\underline{G} = -\underline{S}dT + \underline{V}dP + \sum_i^n \mu_i dN_i\)

Minimized